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Abstract: Prior studies have shown that atrophy in vulnerable cortical regions is associated with an
increased risk of progression to clinical dementia. In this work, we utilize the longitudinal structural
magnetic resonance imaging (MRI) data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) to
investigate the relationship between the temporally changing spatial topography of cortical thickness and
conversion from mild cognitive impairment to Alzheimer’s disease (AD). We develop a novel Bayesian
latent spatial model that employs the spatial information underlying the thickness effects across the cortical
surface. The proposed method facilitates the development of imaging markers by reliably quantifying and
mapping the regional vulnerability to AD progression across the cortical surface. Simulation results showed
substantial gains in statistical power and estimation performance by accounting for the spatial structure of
the association. Using MRI data from ADNI, we examined the topographic patterns of anatomic regions
where cortical thinning is associated with an increased risk of developing AD. The Canadian Journal of
Statistics 00: 000–000; 2021 © 2021 Statistical Society of Canada
Résumé: Des études précédentes ont montré que l’atrophie de régions corticales vulnérables est associée
à une augmentation du risque de la progression de la démence clinique. Les auteurs utilisent les données
d’imagerie par résonnance magnétique (IRM) longitudinales de l’initiative d’imagerie médicale pour la
maladie d’Alzheimer (IIMMA) afin d’étudier la relation entre l’évolution dans le temps de la topographie
spatiale de l’épaisseur corticale et la conversion de déficiences cognitives modérées (DCM) vers la maladie
d’Alzheimer (MA). Ils développent un nouveau modèle latent spatial bayésien qui utilise l’information
spatiale par rapport au cortex dans la mesure de l’effet lié à l’épaisseur corticale. La méthode proposée
facilite le développement de marqueurs d’imagerie en quantifiant et en localisant de façon fiable des
vulnérabilités régionales qui mènent à une progression vers la MA. Les auteurs présentent des résultats de
simulations montrant des gains substantiels de puissance statistique et de performance pour l’estimation
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lorsque la structure spatiale de l’association est prise en compte. Avec les données d’IRM de l’IIMMA, ils
examinent les motifs topographiques des régions anatomiques où l’amincissement cortical est associé à un
risque accru de développer la MA. La revue canadienne de statistique 00: 000–000; 2021 © 2021 Société
statistique du Canada

1. INTRODUCTION

Research on aging and dementia has identified a transitional state between normal cognition and
Alzheimer’s disease (AD), known as mild cognitive impairment (MCI) (Petersen et al., 2001).
Individuals classified with MCI progress to AD at a considerably accelerated rate compared with
healthy individuals (Petersen et al., 1999). Studying the risk factors associated with conversion
to AD is of immense importance as therapeutic interventions for the delay or prevention of AD
onset are developed (Galvin, 2017; Crous-Bou et al., 2017), and treatment trials are under way.

Neuroimaging has accelerated the study of AD-related clinical conditions as it enables
researchers to investigate the temporal dynamics of the underlying biological mechanisms
through serial imaging measurements. For example, structural magnetic resonance imaging
(MRI) can visualise the degenerative changes caused by AD that occur before AD can be
clinically diagnosed, and therefore can be used for predicting AD onset (Gomez-Isla, Price &
Hyman, 1996). Prior studies suggest that analysis of the cortical thickness in key brain regions
can be used to identify individuals at greatest risk for developing AD (Buckner et al., 2005;
Dickerson et al., 2009). Cortical thickness analysis can quantify the atrophy attributable to AD
along the cortical surface. The specific pattern of cortical thinning that appears to be associated
with AD comprises the medial, inferior, and pole of the temporal lobe; the angular gyrus; the
superior and inferior frontal lobe; the superior parietal lobule; the supramarginal gyrus; and the
precuneus (Brun & Gustafson, 1976; Braak & Braak, 1991; Lerch et al., 2005; Dickerson et al.,
2009, 2011).

Previous analyses of the relationship between cortical measurements and AD often used
a case–control approach (Jack et al., 2012; Sabuncu et al., 2012) which may involve linear
mixed modelling (Bernal-Rusiel et al., 2013). The case–control approach treats those who have
developed AD and those who have not developed AD as distinct groups and assumes a certain
amount of within-group homogeneity, an assumption which is often violated in Alzheimer’s
studies because MCI subjects who have not yet converted to AD are likely to develop AD in the
not-too-distant future. Treating these high-risk subjects as controls can introduce bias into the
statistical analysis. Also, available information in those who have yet to convert after the fixed
follow-up time cannot be used in this type of analysis (Vemuri et al., 2011).

Instead of dichotomizing the MCI subjects into converters and non-converters, one can treat
them as being in different stages of disease progression. Under this setup, survival analysis can
be used to directly model the timing of AD onset, called survival time, while accounting for
varying follow-up times and incorporating partial information in the form of censoring (Klein &
Moeschberger, 2013). Various survival models, including the Cox proportional hazards model
(Cox, 1972), proportional odds model, additive hazards model, accelerated failure time model,
etc., have been employed in prior neuroimaging studies to demonstrate the association between
cortical thinning and conversion to AD (Stoub et al., 2005; Devanand et al., 2007; Desikan et
al., 2010; Vemuri et al., 2011; Lee et al., 2015). These prior studies relied on standard survival
models that assumed time-invariant explanatory variables, and therefore were restricted to using
MRI data obtained from a single visit and could not take into account the dynamic changes of
the imaging measurements whenever the study had a longitudinal design. To use serial MRIs,
we propose to use survival models that incorporate time-dependent covariates. The interested
reader is referred to Fisher & Lin (1999), Ibrahim, Chen & Sinha (2001), Klein & Moeschberger
(2013), and Klein et al. (2016) for examples of these methods.
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Existing approaches for the spatial analysis of survival data related to human healthcare are
not applicable to our particular dataset. The literature has been focused on modeling and analysis
for geographically referenced survival data (Rushton, 2003; Banerjee, 2016; Zhou & Hanson,
2018), whereas each subject’s time-to-conversion to AD does not vary across the cortical surface
despite geographically referenced longitudinal imaging measurements. Recently, Sabuncu et al.
(2014) developed an approach to investigating the association between space-invariant survival
time and space-varying longitudinal imaging measurements based on survival analysis using each
spatial location in the serial MRIs as a separate predictor. This type of analysis, which we call a
massively univariate analysis (MUA), suffers from inefficient estimation that reduces statistical
power due to the separate modeling of the covariance components at each spatial location.

The goal of this study is to develop a novel statistical method for identifying the topographic
patterns of anatomic regions where cortical thinning is associated with an increased risk of
developing AD. We propose a Bayesian latent spatial model that employs the spatial information
underlying the thickness effects across the cortical surface. Specifically, we build on the
Weibull model (Carroll, 2003; Zhou & Hanson, 2018) for survival analysis with time-dependent
covariates to quantify the effects at each spatial location while borrowing information from
nearby locations, effectively improving statistical power and stability.

The rest of the paper is organised as follows. In Section 2 we describe the novel Bayesian
latent spatial model. Then, in Section 3 we carry out a simulation study to validate our approach.
We apply our Bayesian latent spatial model to the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) data in Section 4, and end with a discussion and conclusions in Section 5.

2. METHODS

2.1. Experimental Data and Pre-processing
We use the longitudinal clinical and structural MRI data from ADNI, consisting of 300 subjects
with MCI at study entry. Specifically, our data comes from ADNIMERGE, which is a merged
dataset containing ADNI 1/GO/2 clinical data. We use all the subjects in ADNIMERGE that meet
the following three conditions: (i) The subject’s MRI scan is available in the ADNI database; (ii)
the subject was MCI, early MCI, or late MCI at study entry; (iii) the subject did not go back and
forth during follow-up, that is, if a subject converted to AD and then went back to MCI at a later
visit, the subject would be excluded from data analysis. Only 300 subjects meet these conditions.

The subjects are on average 74.7 years old at study entry with a standard deviation of 7.03
years. About 37.7% of them are female. The subjects fall into two categories: converters, that is,
those who converted to clinical AD during the follow-up period; and non-converters, that is, those
who did not convert to AD during follow-up. There are 181 converters, whose first diagnosis
of AD is on average 2.51 years with a standard deviation of 1.95 years. For the remaining 119
MCI subjects, the average censoring time, that is, the final follow-up visit, is on average 4.32
years with a standard deviation of 2.86 years. Table 1 summarizes the demographic, clinical,
and imaging characteristics of the participants. To illustrate the time-to-conversion from MCI to
AD, Figure 1 presents the Kaplan–Meier estimator of the survival function.

We processed the MRI scans using FreeSurfer (version 6.0, Fischl, 2012), specifically
its longitudinal stream (Reuter et al., 2012) to extract reliable cortical thickness estimates.
FreeSurfer computes subject-specific thickness measurements across the cortical surface of each
hemisphere. Each subject’s data were resampled onto a standard surface-based template, called
fsaverage. Then we applied minimal spatial smoothing using a Gaussian kernel with a standard
deviation of 0.85 mm, which corresponds to a full-width at half-maximum (FWHM) of 2 mm.
For computational efficiency, we downsampled the cortical thickness measurements by mapping
the data onto the fsaverage4 template, which is a lower resolution version of fsaverage and
has 2,562 vertices and 5,120 triangular faces in each hemisphere’s surface mesh. Finally, we
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TABLE 1: Demographic, clinical, and imaging characteristics of the participants at study entry. Survival
time or censoring time, age, MMSE score, global cortical thickness and education are in mean± standard

deviation. The range of the number of visits is listed in square brackets.

MCI subjects Converters Non-converters

Number of subjects 300 181 119

Number of imaging visits 4.52 [1–7] 4.66 [1–7] 4.32 [1–6]

Survival time or censoring time (years) 3.23± 2.51 2.51± 1.95 4.32± 2.86

Global cortical thickness (mm) 2.08± 0.15 2.05± 0.15 2.12± 0.13

Age (years) 74.70± 7.03 74.46± 6.96 75.06± 7.15

Gender (female/male) 113/187 66/115 47/72

MMSE score 27.04± 1.78 26.82± 1.75 27.37± 1.79

ApoE4 (carriers/non-carriers) 164/136 115/66 49/70

Education (years) 15.67± 3.04 15.80± 2.89 15.49± 3.25
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FIGURE 1: Kaplan–Meier estimated survival curve of the MCI-to-AD conversion. The dashed
lines show pointwise 95% confidence intervals.

temporally smoothed the measurements using a linear mixed-effects (LME) model where cortical
thickness was assumed to be a linear function of time with a random intercept and random
slope for each subject. LME was used to find the trend over time due to the limited availability
of repeated measures (no more than 3 for 21.67% of subjects) and the small value of cortical
thickness (0.4–3.3 mm for 90% of subjects and vertices). Subject-specific random intercept and
slope were introduced to account for the large variation between subjects as shown in Figure 2.
The model was fitted in R using the lme4 package (version 1.1-19, Bates et al., 2018). Due
to the inter-subject variability of the timing of the serial imaging measurements and the lack
of coincidence between clinical visits and image acquisitions, we estimated image data at all
observed survival times via interpolation and extrapolation using the fitted LME model.

We used the Desikan–Killiany cortical atlas having 36 regions of interest (ROIs) in each
hemisphere (Desikan et al., 2006). The “unknown” ROI corresponding to the medial wall and the
corpus callosum are non-cortical and therefore were discarded from further analysis. Considering
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FIGURE 2: Spaghetti plots of the cortical thickness of 10 randomly selected subjects at 3
randomly selected vertices in each hemisphere. The raw data is shown as solid lines while the

fitted result is shown as dashed lines.

the cortical folding along the cortical surface, we used the geodesic distance to compute the
spatial correlation matrix in data analysis. Specifically, within each ROI, we used the C++ library
geodesic (Kirsanov, 2008) to compute the exact geodesic distance on a surface mesh, which
is determined by the number of edges in a shortest path connecting two vertices.

2.2. Vertex-specific Survival Models
Let Yi denote the time-to-AD conversion for subject i (i = 1,… , n), where we set the time origin
at study entry. Define 𝛿i as an indicator that subject i converted to AD during the follow-up
period. For non-converters, that is, 𝛿i = 0, let yi denote the time of the last visit, and thus
Yi > yi. For converters, that is, 𝛿i = 1, let yi0 denote the time of the last visit identified with
MCI and let yi1 denote the time of the first visit identified with AD; thus, the survival time Yi
satisfies yi0 < Yi ≤ yi1. Let Si(⋅) denote the survival function for subject i. Assuming independent
censoring, we write the likelihood as (Klein & Moeschberger, 2013)

n∏
i=1

{Si(yi0) − Si(yi1)}𝛿iSi(yi)1−𝛿i . (1)

For subjects who converted to AD, that is, 𝛿i = 1, we let yi ∶= (yi0 + yi1)∕2 denote the
midpoint of the interval and approximate the likelihood component Si(yi0) − Si(yi1) by (yi1 −
yi0)Si(yi)hi(yi) for ease of computation, where hi(⋅) is the hazard function, defined as the
instantaneous rate of occurrence of conversion to AD given that it has not previously occurred.

We let xiv(t) denote subject i’s cortical thickness at the location of vertex v and time t.
Additionally, we consider the following time- and space-invariant covariates: age at study entry,
gender, and ApoE genotype status (1 if an e4 carrier and 0 otherwise), which has been found to
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greatly increase the odds that an individual will develop Alzheimer’s disease (Liu et al., 2013).
Let Z denote the matrix of time- and space-invariant covariates, together with an additional
column of ones and let Zi be the ith row of Z, corresponding to subject i. Then the hazard function
for subject i at vertex v is

hiv(t) = h0v(t) exp
(
xiv(t)𝛽v + Z⊤

i 𝜸v
)
, (2)

where h0v(t) is the baseline hazard function, 𝛽v is the coefficient for the cortical thickness effect
at vertex v, and 𝜸v is the vector of coefficients for the time- and space-invariant covariates. Then
the corresponding cumulative hazard is

Hiv(t) = ∫
t

0
hiv(u)du, (3)

and the associated survival function is Siv(t) = exp{−Hiv(t)}.
We assume a Weibull baseline hazard, h0v(t) = 𝛼vt𝛼v−1 with the shape parameter 𝛼v > 0.

While other baseline hazard functions are possible, we used a Weibull baseline hazard because
it simplifies the likelihood, leads to a tractable posterior distribution, and is computationally
faster. Define y = (y1,… , yn)⊤ and 𝜹 = (𝛿1,… , 𝛿n)⊤. Combining Equations (1)–(3), we rewrite
the likelihood at vertex v up to a normalizing constant as

p(y, 𝜹|𝛽v, 𝜸v, 𝛼v) ∝
n∏

i=1

{
𝛼vy𝛼v−1

i exp
(
xiv(yi)𝛽v + Z⊤

i 𝜸v
)}𝛿i

× exp
{
− exp(Z⊤

i 𝜸v) ∫
yi

0
𝛼vt𝛼v−1 exp

(
xiv(t)𝛽v

)
dt
}

. (4)

We take advantage of the fitted LME model from the temporal smoothing in pre-processing and
obtain subject i’s cortical thickness at vertex v as a linear function of time t, xiv(t) = xiv(0) + kivt,
where xiv(0) and kiv are the estimated intercept and slope, respectively. We compute the integral
∫ yi

0 𝛼vt𝛼v−1 exp
(
xiv(t)𝛽v

)
dt using the lower incomplete gamma function when kiv𝛽v < 0, or using

numerical integration when kiv𝛽v ≥ 0.

2.3. Spatial Model for the Cortical Thickness Effects
We conducted a preliminary ROI-level analysis to explore the spatially varying association
between conversion to AD and time-varying cortical thickness averaged within each ROI.
We analyzed each ROI separately using a Cox proportional hazard model with extension to
incorporate time-dependent covariates. Table 2 shows the z-score from the preliminary analysis
of each ROI-level cortical thickness effect reflecting the significance of the association. We
observed appreciable association in most ROIs and large spatial variation in the strength of the
association across ROIs. However, the results can be misleading as the imaging measurements
are averaged within each ROI. The effect is most pronounced with large ROIs. An ROI-level
analysis cannot address whether the strength of the association is evenly distributed within an
ROI, or due to a small sub-region strongly associated with conversion to AD. To overcome this
limitation, we need to investigate the association at each vertex.

We examined the spatially varying association between vertices via MUA, in which an
extended Cox proportional hazard model was fitted at each vertex separately. Prior to MUA,
the MRI data was spatially smoothed using a Gaussian kernel with a standard deviation of
3.4 mm, which corresponds to a FWHM of 8 mm. The amount of spatial smoothing was selected
according to the recommendation by Bernal-Rusiel et al. (2013). In general, the optimal extent
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TABLE 2: ROI-level ADNI MCI data analysis results: z-scores per hemisphere reflecting the significance
of the association between time-to-conversion to AD and time-varying cortical thickness.

ROI Left Right ROI Left Right

bankssts −4.86 −2.60 parahippocampal −3.09 −3.49

caudalanteriorcingulate 0.40 −0.81 parsopercularis −4.17 −2.90

caudalmiddlefrontal −2.51 −1.76 parsorbitalis −3.64 −3.07

cuneus −1.18 −0.76 parstriangularis −1.61 −2.01

entorhinal −5.61 −5.69 pericalcarine −2.72 −3.25

frontalpole −3.26 −2.60 postcentral −1.83 −0.78

fusiform −5.19 −4.63 posteriorcingulate −3.29 −1.96

inferiorparietal −4.66 −4.81 precentral −1.81 −1.40

inferiortemporal −5.26 −4.69 precuneus −4.23 −4.31

insula −3.67 −3.87 rostralanteriorcingulate −2.50 −1.11

isthmuscingulate −5.13 −4.16 rostralmiddlefrontal −3.47 −2.20

lateraloccipital −2.88 −2.79 superiorfrontal −2.26 −1.87

lateralorbitofrontal −3.02 −2.91 superiorparietal −2.37 −2.60

lingual −2.66 −2.81 superiortemporal −3.70 −3.67

medialorbitofrontal −2.35 −2.68 supramarginal −4.20 −4.02

middletemporal −5.76 −4.80 temporalpole −5.83 −3.46

paracentral −2.08 −2.18 transversetemporal −2.46 −3.46

of smoothing depends on the sample size, the effect size, the spatial extent of the effect, and the
type of multiple comparison correction. The estimated coefficients obtained using MUA at the
vertices having uncorrected P < 0.05 are plotted in Figure 3. We observe large spatial variation
in the thickness effects across the cortical surface. There seems to be a strong association between
conversion to AD and time-varying cortical thickness in the temporal lobe and the parietal lobe,
while many other areas show little effect. Furthermore, the empirical semivariogram of the
estimated coefficients within each ROI had distinct shapes that varied across ROIs. Altogether,
the MUA suggested an investigation of the spatial structure of the estimated coefficients within
each ROI and a spatially varying association between time-to-conversion to AD and cortical
thickness. The distinct shapes of the empirical semivariograms suggested a spatial structure in
the estimated effects that is non-stationary across the cortical surface.

Hereafter, we present our method for one arbitrary ROI and assume that cortical thickness
is observed at V vertices. We model the spatially varying coefficient for cortical thickness
𝜷 = (𝛽1,… , 𝛽V )⊤ as a zero-mean Gaussian process (GP) capturing spatial association and
measurement error or fine-scale variation. We assume the spatial correlation is isotropic to avoid
the difficulty of accounting for directions on the topologically complex cortical surface. The
covariance function of the GP that we use is given by C𝜙,𝜎2 (d(v, v′)) + 𝜏2I(d(v, v′) = 0), where
C𝜙,𝜎2 (d(v, v′)) = 𝜎2 exp(−𝜙d(v, v′)), and d(v, v′) denotes the geodesic distance between vertex v
and vertex v′. Other correlation structures are possible. The partial sill 𝜎2, nugget 𝜏2, and the
decay or inverse range 𝜙 are unknown parameters that we need to estimate. For ease of notation,
we define C𝜙,𝜎2(v, v′) = C𝜙,𝜎2 (d(v, v′)). We let  = (1,… ,V)⊤ and write the spatial model as
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FIGURE 3: Results of the preliminary MUA of the ADNI data: Estimated coefficient for the
cortical thickness effect at each vertex having uncorrected P < 0.05. The top and bottom rows
show views of the lateral and medial surfaces, respectively. The left and right panels correspond

to the left and right hemispheres, respectively.

𝜷|𝜙, 𝜎2, 𝜏2 ∼ N(0,C𝜙,𝜎2 ( ,) + 𝜏2IV ) . (5)

Traditional spatial-statistical techniques for likelihood-based inference involve the inverse
and determinant of the dense V × V covariance matrices, where V , the number of cortical
thickness measurements in an ROI, can be large. Incorporating time-dependent covariates in
modeling survival data poses additional challenges to computing and storage. The GP is therefore
computationally prohibitive and we need a highly scalable alternative to tackle the difficulties.
Specifically, we use the nearest-neighbour Gaussian process (NNGP) proposed by Datta et
al. (2016). In NNGP, the precision matrix of the GP (C𝜙,𝜎2 ( ,) + 𝜏2IV )−1 is approximated
by (I − A𝜙,𝜎2,𝜏2)⊤(D𝜙,𝜎2,𝜏2 )−1(I − A𝜙,𝜎2,𝜏2), so that the spatial model specified in Equation (5)
becomes

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs
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𝜷|𝜙, 𝜎2, 𝜏2 ∼ N(0, ((I − A𝜙,𝜎2,𝜏2)⊤(D𝜙,𝜎2,𝜏2)−1(I − A𝜙,𝜎2,𝜏2 ))−1), (6)

where A𝜙,𝜎2,𝜏2 is a sparse and strictly lower triangular matrix with at most M non-zero entries in
each row, where M is much less than V , and D𝜙,𝜎2,𝜏2 is a diagonal matrix (Finley et al., 2018).
The likelihood that arises using the NNGP spatial model identified in (6) is a scalable alternative
compared to the corresponding likelihood based on using the GP identified in Equation (5) using
the GP, but the storage and computational burden of the former is linear in V (Datta et al., 2016).
Datta et al. (2016) showed that the NNGP performs well and sometimes better than the GP when
estimating the true underlying spatial process at a fraction of the computational cost. In fact,
Datta et al. (2016) illustrated that usually a small value of M between 10 and 15 for the NNGP
produces predictive performance on par with the GP when V = 2, 000. In our data application, V
is the number of cortical thickness measurements in an ROI which is less than 200 and therefore
M = 5 suffices.

We now describe how to construct the matrices A and D, where we omit subscripts for ease
of notation. Matrix A is strictly lower triangular with at most M non-zero entries in each row,
where M is much less than V . Let N(v) be the set of indices of at most M closest points to vertex
v among the vertices indexed less than v. The vth row (v > 1) of A has non-zero entries only at
positions indexed by N(v), calculated via

A(v,N(v)) = C𝜙,𝜎2(v,N(v)){C𝜙,𝜎2 (N(v),N(v)) + 𝜏2I}−1 . (7)

Matrix D is diagonal with the vth (1 ≤ v ≤ V) diagonal entry given by

D(v, v) = 𝜎2 + 𝜏2 − C𝜙,𝜎2 (v,N(v)){C𝜙,𝜎2 (N(v),N(v)) + 𝜏2I}−1C𝜙,𝜎2(N(v), v) . (8)

2.4. Bayesian Latent Spatial Modelling and Analysis
We now formally introduce our Bayesian latent spatial model, which combines the survival
models that predict the timing of MCI-to-AD conversion at all vertices by putting a spatial prior
on the coefficients for the time-varying cortical thickness. The spatial effects of the imaging
measurements are not directly observed and hence are called latent. A graphical representation
of the Bayesian latent spatial model is shown in Figure 4.

We adopt a Bayesian approach to parameter estimation. For parameters in the survival
model specified in Equation (4), we follow Ibrahim, Chen & Sinha (2001) and assume the
prior of the shape parameter of the Weibull distribution 𝛼v’s is independent and identically
distributed (i.i.d.) Gamma(a, b) with a = 1 and b = 0.02. The prior of the coefficients for the
time- and space-invariant covariates 𝜸v’s is assumed to be i.i.d. N(0, c2

𝜸
I) with c2

𝜸
= 100. For

the spatial model specified in Equation (6), we follow Banerjee, Carlin & Gelfand (2014)
and assume 𝜎2 ∼ Inv-Gamma(𝜆𝜎2 , 𝜅𝜎2 ), 𝜏2 ∼ Inv-Gamma(𝜆𝜏2 , 𝜅𝜏2 ) with 𝜆𝜎2 = 𝜆𝜏2 = 2 and
𝜅𝜎2 = 𝜅𝜏2 = 0.02. Using the empirical semivariograms from the MUA, we saw that the range
parameter varied between 0.1 and 1 across ROIs, and thus we choose 𝜙 ∼ Uniform(𝜃1, 𝜃2) with
𝜃1 = 1 and 𝜃2 = 10.

Define 𝜸 = (𝜸⊤1 ,… , 𝜸⊤V )
⊤ and 𝜶 = (𝛼1,… , 𝛼V )⊤. Combining the survival models specified

in Equation (4), the spatial model identified in Equation (6), and the prior specifications, the
Bayesian latent spatial model is as follows:

p(y, 𝜹|𝜷, 𝜸,𝜶) ∝ V∏
v=1

n∏
i=1

{
𝛼vy𝛼v−1

i exp
(
xiv(yi)𝛽v + Z⊤

i 𝜸v
)}𝛿i

× exp
{
− exp(Z⊤

i 𝜸v) ∫
yi

0
𝛼vt𝛼v−1 exp

(
xiv(t)𝛽v

)
dt
}

,
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FIGURE 4: Graphical representation of the Bayesian latent spatial model. Shaded squares
represent observed quantities and circles represent unknowns.

𝜷|𝜙, 𝜎2, 𝜏2 ∼ N(0, ((I − A𝜙,𝜎2,𝜏2)⊤D−1
𝜙,𝜎2,𝜏2(I − A𝜙,𝜎2,𝜏2 ))−1),

𝜸v
i.i.d.∼ N(0, c2

𝜸
I),

𝛼v
i.i.d.∼ Gamma(a, b),

𝜙 ∼ Uniform(𝜃1, 𝜃2),

𝜎2 ∼ Inv-Gamma(𝜆𝜎2 , 𝜅𝜎2 ),

𝜏2 ∼ Inv-Gamma(𝜆𝜏2 , 𝜅𝜏2 ) .

Bayesian inference can proceed by sampling from the posterior p(𝜷, 𝜸,𝜶, 𝜙, 𝜎2, 𝜏2|y, 𝜹) using
Markov chain Monte Carlo (MCMC) methods. We estimated the coefficients of the time-varying
cortical thickness at all vertices using the posterior means and the highest posterior density (HPD)
intervals were calculated using the MCMC simulations. Association at a vertex was declared to
be significant if the 95% HPD interval excluded zero.

2.5. Computational Details
We used the Hamiltonian Monte Carlo (HMC) algorithm (Neal, 2011) with the No-U-Turn
sampler (NUTS) with dual averaging (Hoffman & Gelman, 2014), which is an extension
to HMC that automatically adapts the tuning parameters. Compared to the random walk
Metropolis-Hastings, the HMC substantially reduces the computational cost because HMC
iterations are less correlated, and thus it takes fewer iterations to achieve the same level of
precision when estimating the posterior mean (Neal, 2011). HMC and NUTS are implemented
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in Stan (Stan Development Team, 2018b) and its R interface as the rstan package (version
2.17.3 Stan Development Team, 2018a) which we used for model fitting and data analysis.

We assessed performance of the MCMC algorithm by examination of trace plots, density
plots, and autocorrelation plots, all of which indicated sufficiently fast mixing of the simulation.
For convergence diagnostics, we followed Geyer (2011) and Vats, Flegal & Jones (2019) by
assessing the Monte Carlo error using the multivariate initial sequence method (Dai & Jones,
2017). To select the length of the warmup phase used to adapt any tunable MCMC parameters and
determine when to terminate the simulation, we used the relative standard deviation fixed-volume
stopping rule and selected the simulation effort so that the multivariate effective sample size
(ESS) exceeded 3,000 (Dai & Jones, 2017; Vats, Flegal & Jones, 2018, 2019). Analyses of
MCMC output were performed in R using the mcmcse package (version 1.3-2, Flegal et al.,
2017). The results varied across ROIs depending mainly on the number of vertices in each ROI.
For a medium-sized ROI, an ESS of 3,000 required 10,000 iterations with a warmup length of
500, and 96 h of computing time.

3. SIMULATION STUDY

In a two-dimensional Euclidean space, we considered a domain of a grid of size 32 × 32,
where each location was indexed by (vx, vy) with vx, vy = 1, 2,… , 32. To generate the coefficient
𝛽v, v = 1, 2,… ,V at all V = 1, 024 locations, we used a zero-mean Gaussian random field,
where the covariance function was given by an exponential semivariogram model with a sill of
0.2, a range of 8 and a nugget of 0. The simulated values having a magnitude less than 0.1 were
reset to 0. Figure 5 shows the resulting coefficients.

We generated the covariates at all locations as follows. For each subject independently, we
generated i.i.d. normal errors with mean 0 and standard deviation 0.5 at all locations, followed
by Gaussian kernel smoothing with a standard deviation of 1. Then we generated a random effect
for each subject independently from a normal distribution with mean 3 and standard deviation 1
and added it to the simulated values at all locations.

−1.0

−0.5

0.0

0.5

1.0

FIGURE 5: Simulated coefficients. The simulated coefficients are non-zero at 794 locations
shown in colour, and zero at 230 locations shown in white.
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TABLE 3: Simulation results obtained using the Bayesian latent spatial model and MUA. The FNR and
FPR within the spatial domain were estimated using the 100 simulated data sets with standard errors given

in parentheses. The MSE of the estimated coefficient at each location was calculated using the 100
simulated data sets and is presented as a median with 25 and 75% quantiles in square brackets across the

non-null locations and the null locations, respectively.

Performance measure Bayesian latent spatial model MUA

FNR 0.020 (0.000) 0.415 (0.001)

FPR 0.038 (0.001) 0.052 (0.001)

MSE at non-null locations 0.002 [0.002, 0.003] 0.018 [0.014, 0.032]

MSE at null locations 0.002 [0.001, 0.002] 0.017 [0.015, 0.018]

We simulated each subject’s survival time from a Weibull model with a shape of 1 and a
scale equal to the exponential of the negative of the simulated covariate times the simulated
coefficient at each location. Censoring times were independently simulated from a uniform
distribution from 0 to c, where c was chosen to achieve a desired censoring rate of approximately
40%, which was similar to what we observed in the ADNI data.

We chose a sample size of n = 100 and simulated 100 data sets of survival time and censoring
time using the same set of simulated covariates and coefficients. The Bayesian latent spatial
model was implemented to estimate the coefficients. The computation time for one repetition was
approximately 3 h to achieve an ESS of 3,000. The effect at a location was declared significant
if the 95% HPD interval excluded zero. We also conducted a MUA for benchmarking. To
examine the performance of each method, we calculated the false negative rate (FNR) and the
false positive rate (FPR) within the spatial domain, and the mean squared error (MSE) at each
location. We first obtained an FNR and an FPR within the spatial domain for each repetition, and
then calculated the averages and standard errors from the 100 simulated data sets. The MSE at
each location was calculated using the 100 simulated data sets. We reported the median, 25 and
75% quantiles of the MSE among the non-null locations where the coefficients were non-zero,
and among the null locations, respectively.

Table 3 presents the results where the performance of the Bayesian latent spatial model is
compared to MUA. The Bayesian latent spatial model shows substantial improvement in the
FNR, which corresponds to greater statistical power. We also observed a small but consistent
decrease in the FPR, which indicates that the Bayesian latent spatial model is sharp in detecting
true association but not oversensitive. The MSE obtained from the Bayesian latent spatial model
appears small at each location. In addition to reduced estimation error, the Bayesian latent
spatial model also shows smaller variance, which led to more stable inference. Altogether, this
simulation study shows the substantial improvements in the error rates and in the estimation
of the coefficients of the Bayesian latent spatial model compared to the MUA, which resulted
from the latent spatial model’s use of information from spatial neighbours, which the MUA
ignored.

Additionally, we conducted a simulation study that uses the ADNI study data from cortical
thickness images as covariates and the Gaussian random field to generate the true outcome on
the cortical surface, and a simulation study where the true baseline hazard is not Weibull as
assumed in the proposed method. The results in terms of the FNR, FPR and MSE obtained from
these new scenarios led to similar conclusions concerning improved performance from using the
proposed model. A detailed description and the results of the additional simulations are provided
in the Supplementary Material.
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FIGURE 6: ADNI data analysis results obtained using our Bayesian latent spatial model:
Estimated coefficient for the cortical thickness effect at each vertex where significant association
is detected at the 95% credible level. The top and bottom rows show views of the lateral
and medial surfaces, respectively. The left and right panels correspond to the left and right

hemispheres, respectively.

4. DATA ANALYSIS

We analyzed each ROI separately using the Bayesian latent spatial model that accounts for spatial
dependence between vertices. To visualise the result, we plotted the estimated coefficients at
the vertices showing significant association on a whole-brain map; see Figure 6. At the 95%
credible level, significant association was detected at 75.5 and 74.6% of all the vertices in the left
hemisphere and the right hemisphere, respectively. Almost all significant effects were negative
(99.8% in the left hemisphere and 99.9% in the right hemisphere), which indicates that a thinner
cortex is associated with a higher risk of developing AD. In the left hemisphere, the estimated
coefficient for the cortical thickness effect ranged from −0.94 to −0.11 with a median of −0.46,
a 25% quantile of −0.57 and a 75% quantile of −0.37; in the right hemisphere, the estimated
coefficient for the cortical thickness effect ranged from −0.97 to −0.15 with a median of −0.44,
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a 25% quantile of −0.54 and a 75% quantile of −0.35. An estimated coefficient of −0.5 means
that the hazard of developing AD at any time instant will increase by a factor of 5.13% if the
cortical thickness at that time instant decreases by 0.1 mm.

Compared to the ROI-level analyses, our method can quantify the cortical thickness effect
at each precise spatial location and detect association that is sparsely distributed in an ROI.
The 1% largest effect sizes in the left hemisphere, namely, estimated coefficient smaller than
−0.815, appeared at 11 vertices in the temporal lobe (bankssts, fusiform, middletemporal,
inferiortemporal, and temporalpole), 13 vertices in the parietal lobe (inferiorparietal, precuneus,
and isthmuscingulate), and 2 vertices in the frontal lobe (parsopercularis and frontalpole). The
1% largest effect sizes in the right hemisphere, namely, estimated coefficient smaller than
−0.798, appeared at 8 vertices in the temporal lobe (fusiform), 12 vertices in the parietal lobe
(inferiorparietal and precuneus), 4 vertices in the occipital lobe (lateraloccipital and pericalcarine),
and 2 vertices in the frontal lobe (precentral). The results obtained using our Bayesian latent
spatial model generally agree with our preliminary MUA and prior studies (Buckner et al., 2005;
Dickerson et al., 2009). However, importantly, we were able to detect a larger spatial extent of
association between conversion to AD and cortical thickness using the Bayesian latent spatial
model. The significant vertices detected by MUA as shown in Figure 3 generally lay within
the area detected by the Bayesian latent spatial model as shown in Figure 6. Specifically, the
Bayesian latent spatial model detected 1.62 times more significant vertices than were detected
by MUA in the left hemisphere, and 2.54 times more in the right hemisphere. These results
are consistent with the conclusions resulting from our simulation study, namely, that our model
substantially enhances statistical power since it accounts for the spatial correlation between
vertices.

5. DISCUSSION

We have developed a novel Bayesian latent spatial model for analyzing the spatially varying
association between MCI-to-AD conversion and the longitudinal measurements of cortical
thickness across the surface of the brain. The Bayesian latent spatial model was employed in
an analysis of the longitudinal MRI data from ADNI to investigate the topographic patterns of
cortical thinning associated with an increased risk of developing AD. Though our results yielded
significant effects in areas previously reported in the literature, we were able to obtain larger
effect sizes and spatial extent of the associations than those previously reported in the literature
by incorporating the spatial structure of the cortical thickness effects.

The Bayesian latent spatial model offers excellent statistical power and stability for detect-
ing associations between clinical events and geographically referenced longitudinal imaging
measurements. The data analysis results show a substantial boost in statistical power with
respect to MUA, which ignores the spatial dependence in the cortical thickness effects. Using a
simulation study, we validated that the Bayesian latent spatial model is powerful in detecting true
association without being oversensitive. Additionally, compared to previous work that analyzed
imaging data obtained from a single visit, our approach opens up the possibility of examining
the relationship between the temporal dynamics of imaging data and clinical events by utilizing
serial measurements that can vary substantially over time.

While the proposed model assumes a Weibull baseline hazard for ease of computation,
other baseline hazards are possible and the Weibull assumption is subject to change based on
the dictates of the data. We observed a higher false positive rate when the Weibull baseline
assumption was violated in a simulation study. Therefore, we suggest selecting the appropriate
baseline hazard on a case-by-case basis when using our proposed method in applications.
Another limitation of our analysis is that we did not account for missing data. Missing data is
not uncommon in MRI studies due to scanner artifact, missed appointments or attrition. We used
approximations to handle issues due to the lack of coincidence between clinical visits and image
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acquisitions and a great amount and unknown pattern of variation and missing information when
imaging data was acquired repeatedly for each subject. In turn, this lack of information makes
it difficult to evaluate the loss attributable to the use of these various approximations. Further
investigations are needed to address these problems.

The code for implementing the Bayesian latent spatial model and data analysis is available
at https://github.com/mfiecas/ADcorticalthickness.
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